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Abstract— This study focuses on the challenges in optimizing
the control of uranium extraction and scrubbing within the
PUREX process. The objective is to maintain the system at
a target solvent saturation level while adhering to operational
constraints, managing disturbances, and adjusting to changes
in set points. The French Alternative Energies and Atomic
Energy Commission (CEA) developed a specialized simulator
called PAREX to model liquid-liquid extraction in the PUREX
process. However, the underlying mathematical model is com-
plicated, consisting of nonlinear, high-dimensional differential-
algebraic equations (DAEs). Consequently, direct application
of optimal control methods would result in computationally
intensive, large-scale nonlinear programming problems. To
overcome this, we propose training a neural network to fore-
cast process outputs based on historical measurements. This
network architecture incorporates long short-term memory
(LSTM), linear regression, and logistic regression networks,
effectively reducing the number of state variables and simplify-
ing the optimization problem. Furthermore, we formulate and
solve nonlinear model predictive control (NMPC) and moving
horizon estimation (MHE) problems using the Particle Swarm
Optimization (PSO) algorithm. Simulation results demonstrate
the effectiveness of this adaptive optimal control approach in
meeting the control objectives, suggesting its potential for real-
world implementation.

I. INTRODUCTION

A. Motivation

The PUREX process, an acronym for ”Plutonium, Ura-
nium, Reduction, EXtraction,” was developed to recover
uranium and plutonium from spent nuclear fuels, which is
composed of 95% uranium, 1% plutonium, and 4% high
radioactive toxic waste (the ultimate waste). This process
offers a high-purity U-Pu recovery and recycling, reducing
the ultimate waste volume and thus contributing to sus-
tainable nuclear energy development. The overall control
objective is quickly driving the process to achieve a desired
solvent saturation level, guarantee constraints, handle the
disturbances, and set point variations.

PAREX is a simulation program developed by the
French Alternative Energies and Atomic Energy Commission
(CEA). It can simulate liquid-liquid extraction operations
within the PUREX process. As reported in [1], PAREX is
currently used in the nuclear fuel reprocessing industry for
process optimization, troubleshooting, and safety analysis.
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PAREX offers valuable insights into process dynamics and
enables the applicability of model-based control approaches.

This work continues the studies of developing the adaptive
Nonlinear Model Predictive Control (NMPC) for the uranium
extraction-scrubbing operation in the PUREX process ([2])
and ([3]). We aim to exploit the benefits of the qualified
PAREX simulator in the control scheme to satisfy the control
objectives and constraints introduced above. However, it
requires high-level security controls when developing an
ANN replicate of PAREX since PAREX and its data are
strictly protected. Therefore, in this first study, we propose
a mathematical model that captures the main dynamics of
the process, then use it to illustrate and study the developed
control strategy in multiple simulations. Note that the pro-
posed algorithm can be generalized to PAREX without any
limitation.

In our previous studies ([2] and [3]), a high dimensional
process model with 128 states was employed. However, note
that from a practical viewpoint, only two state variables have
critical roles in the control problem. Therefore, if we can
reduce the number of variables in the process model, we can
reduce the complexity of the control problem, which is the
motivation of this paper.

Our main idea is to develop an artificial neural network
(ANN) to predict the essential state variables based on
available measurements. Then, the ANN is embedded as
a predictor in the Nonlinear Model Predictive Controller
(NMPC) scheme and as an estimator in the Moving Horizon
Estimator (MHE) strategy. Furthermore, integrating NMPC
and MHE allows us to have an adaptive control scheme in
which any unmeasured disturbances can be estimated and
updated to the controller. To solve the NMPC and MHE
optimization problems, we use the enhanced Particle Swarm
Optimization (PSO) developed in our previous work ([3]).

The Long Short-term Memory (LSTM) neural network,
which was first proposed by [4], is a common choice for
time series prediction applications. Therefore, it represents a
good candidate method for approximating system dynamics,
allowing the application of model-based control techniques
such as NMPC. The applicability of LSTM within NMPC
was comprehensively discussed by [5]. Note that our pro-
posed ANN architecture is based on the LSTM and linear
and logistic regression networks. As will be discussed later
in the paper, the ANN is designed based on the particularities
of the control problem.
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B. Contributions and Paper Organization

This paper presents an ANN-based adaptive control
strategy specifically designed for the uranium extraction-
scrubbing operation in the PUREX process. The ANN ar-
chitecture incorporates LSTM, linear, and logistic regression
networks. In this control strategy, the ANN functions as a
predictor and estimator, with NMPC and MHE solved using
the enhanced PSO algorithm proposed in [3]. Briefly, we:

• propose a dynamical model that captures the primary
attributes of the uranium extraction-scrubbing operation
in the PUREX process. In this paper, this model is
used to develop and study the ANN-based adaptive
MPC algorithm since the data sourced from PAREX
is confidentially protected;

• develop an ANN that can predict the process outputs
based on previous measurements. This ANN allows
making predictions directly from the available measure-
ments, which has significant advantages compared to the
original state space approach since, in this process, not
all the state values can be measured online;

• propose an adaptive control strategy that optimally drive
the system to work at a desired solvent saturation
level while guaranteeing constraints satisfaction (e.g.,
uranium concentration in the fission product, equipment
limits) and adapting to parameters uncertainties (i.e.,
variation in the fresh solvent flow rate);

• study the efficiency of the proposed control strategy
through simulations.

Notations: Vectors are denoted by bold lowercase letters
and matrices are denoted by capital letters. I, 0 denotes
identity and zero matrices of appropriate dimensions. xn

denotes the nth element of x. xn:m denotes a vector slice
from the nth to mth (included) elements of x. ∥x∥Q :=

xTQx. Nm:n := {i ∈ N|m ≤ i < n}.

II. URANIUM EXTRACTION-SCRUBBING OPERATION

A. Mathematical Model

Fig. 1 shows the uranium-scrubbing operation’s principle
consisting of 16 cascaded mixer settlers. In this work, we
propose a model that captures the main dynamics of the
qualified model in PAREX. This model is structured as
a system of nonlinear, stiff, high-dimensional differential-
algebraic equations (DAE). It adheres to mass balances and
assumptions such as constant element densities, immiscible
aqueous and organic phases, perfect mixing, and interfacial
mass transfer derived from the double film theory. The main
difference is that it uses a simplified distribution modulus,
while PAREX’s qualified modulus is derived from practical
data. Notations for system parameters are detailed in Fig. 1
and Tab. I while equation (5) describes the primary extraction
mechanism.

TABLE I
SYSTEM PARAMETERS.

Notation Description
A, O Aqueous and organic flow rates (L/h).
V , W Aqueous and organic volumes (L).
KU , KH Equilibrium constants for U and H .
kU , kH Mass transfer coefficients for U , H .
a, o Related to aqueous and organic phase.
M, D Related to mixer and settler.
[·] Concentration (M).
n Related to stage n of the process.
in Related to inputs to stage n.
i Related to concentrations at the interface.
∗ Related to concentrations at equilibrium.

1) Interface mass transfer: Applying the double film
theory for uranium interfacial mass transfer, as illustrated
in Fig. 2, we have:

kaq
U

(
[U ]aM

n − [U ]aM
i,n

)
= keq

U

(
[U ]aM

i,n − [U ]aM
∗,n

)
, (1a)

kaq
U

(
[U ]aM

n − [U ]aM
i,n

)
= kog

U

(
[U ]oM

i,n − [U ]oM
n

)
. (1b)

In this work, we assume that the transfer resistance can
be neglectable, which can be expressed by using high mass
transfer coefficients:

kaq
U = keq

U = kog
U ≫ 10−4 m/s, (2)

hence, (1) can be rewritten as:

[U ]aM
i,n = 0.5

(
[U ]aM

n + [U ]aM
∗,n

)
, (3a)

[U ]oM
i,n = 0.5[U ]aM

n + [U ]oM
n − 0.5[U ]aM

∗,n. (3b)

Similar relationships for nitric acid concentrations can be
obtained by replacing U with H in equations (1)-(3):

[H]aM
i,n = 0.5

(
[H]aM

n + [H]aM
∗,n

)
, (4a)

[H]oM
i,n = 0.5[H]aM

n + [H]oM
n − 0.5[H]aM

∗,n. (4b)

2) Thermodynamic equilibrium: The primary extraction
mechanism is given by:

UO2+
2 + 2NO−

3 + 2TBP
KU

⇌ UO2 (NO3)2 · TBP, (5a)

H+ + NO−
3 + TBP

KH

⇌ HNO3 · TBP. (5b)

At thermodynamic equilibrium condition, we have

[U ]oM
i,n = KU [U ]aM

∗,n[NO3]
aM
∗,n

2
[TBP ]oM

freei,n
2
, (6a)

[H]oM
i,n = KH [H]aM

∗,n[NO3]
aM
∗,n[TBP ]oM

freei,n, (6b)

where

[NO3]
aM
∗,n = 2[U ]aM

∗,n + [H]aM
∗,n, (7a)

[TBP ]oM
tot n = [TBP ]oM

freei,n + 2[U ]oM
i,n + [H]oM

i,n , (7b)

which leads to

[TBP ]oM
freei,n =

2cn

bn +
√

b2n + 4ancn
, (8a)
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Fresh Solvent
OE , [TBP]total

E

Fission Products
[U]aqD

1 , [H]aq,D
1

Feed Solution
AF , [U]aqM

F , [H]aqM
F

Acid
AE , [H]aqM

E

Loaded Solvent
[U]ogD

16 , [H]ogD
16

Stage 1 Stage 2 Stage 8 Stage 9 Stage 10 Stage 16

. . . . . .

EXTRACTION FP SCRUBBING

Fig. 1. Uranium extraction-scrubbing operations using mixers-settlers ([2]).

[U ]oMi,n

[U ]aMi,n

[U ]aM∗,n

[U ]aMn

[U ]oMn

Aqueous phase Organic phase

Diffusion boundary layers

Fig. 2. Profile of aqueous uranium concentration in the mixer, as derived
with the two-film theory ([6]).

where

an = 2KU [U ]aM
∗,n

(
2[U ]aM

∗,n + [H]aM
∗,n

)2
, (8b)

bn = 1 +KH [H]aM
∗,n

(
2[U ]aM

∗,n + [H]aM
∗,n

)
, (8c)

cn = [TBP ]oM
tot n. (8d)

By substituting (3b), (4b), (7), and (8) to (6), and assume that
[TBP ]oM

tot n = [TBP ]oM
tot E for all stages, we obtain algebraic

equations of uranium and acid concentrations, denoted by
gUn , gHn , respectively:

gUn
(
[U ]aM

n , [U ]oM
n , [H]aM

n , [H]oM
n , [U ]aM

∗,n, [H]aM
∗,n

)
= 0, (9a)

gHn
(
[U ]aM

n , [U ]oM
n , [H]aM

n , [H]oM
n , [U ]aM

∗,n, [H]aM
∗,n

)
= 0. (9b)

3) Flowrate and volume model: Consider the mixer-
settler model showed in Fig. 3, in the absence of monophasic
reactions (only extraction phenomenon). The input flowrates
and concentrations to the mixer of stage n are:

AM
n,i = AD

n+1, OM
n,i = OD

n−1, (10a)

[U ]aM
n,in = [U ]aD

n+1, [U ]oM
n,in = [U ]oD

n−1, (10b)

[H]aM
n,in = [H]aD

n+1, [H]oM
n,in = [H]oD

n−1. (10c)

Note that at the stages n ∈ {1, 8, 16}, we have:

OM
1,in = OE , A

M
8,i = AD

9 +AF , A
M
16,in = AE , (11a)

[U ]oM
1,in = [H]oM

n,in, [U ]aM
16,in = 0, [H]aM

16,in = [H]aq
E , (11b)

[U ]aM
8,in =

(
AF [U ]aq

F +AD
9 [U ]aD

9

)
/(AF +AD

9 ), (11c)

[H]aM
8,in =

(
AF [U ]aq

F +AD
9 [H]aD

9

)
/(AF +AD

9 ). (11d)

On,i

[U]
ogD
n,i

[H]
ogD
n,i

An,i

[U]
aq
n,i

[H]
aq
n,i

AM
n , [U]

aqM
n , [H]

aqM
n

OM
n , [U]

ogM
n , [H]

ogM
n

OD
n

[U]
ogD
n

[H]
ogD
n

AD
n

[U]
aqD
n

[H]
aqD
n

Fig. 3. Mixer-settler model [2].

Applying total mass balances to the mixer tank, we have:

V̇ M
n = AM

n,i −
AM

n +OM
n

V M
n +WM

n

· V M
n , (12a)

ẆM
n = OM

n,i −
AM

n +OM
n

V M
n +WM

n

·WM
n . (12b)

The perfect mixing assumption mean V̇ M
n = ẆM

n = 0,
hence:

AM
n,iW

M
n = OM

n,iV
M
n . (13)

In addition, assume that there is no leakages in the system
and all mixer-settlers have the same volume, we have:

AM
n = AD

n , OM
n = OD

n , (14a)

V M
1 +WM

1 = V M
2 +WM

2 = · · · = V M
16 +WM

16 . (14b)

4) Mass balances of U and H: Applying the mass bal-
ances to uranium in the aqueous and organic phases in the
mixer tanks, we have:

[U̇ ]aM
n =

(
An,i[U ]aq

n,i −AM
n [U ]aM

n − ΦU
n

)
/V M

n , (15a)

[U̇ ]oM
n =

(
On,i[U ]og

n,i −OM
n [U ]oM

n +ΦU
n

)
/WM

n , (15b)

ΦU
n =

6kUV
M
n

d

(
[U ]aM

n − [U ]aM
i,n

)
, (15c)

where ΦU
n denotes the uranium interfacial mass transfer

term, and by substituting (3a) to (15c), we have

ΦU
n =

3kUV
M
n

d

(
[U ]aM

n − [U ]aM
∗,n

)
. (15d)
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Regarding the settler tanks, the mass balances equations
for uranium are given as:

[U̇ ]aD
n =

(
AM

n [U ]aM
n −AD

n [U ]aD
n

)
/V D

n , (16a)

[U̇ ]oD
n =

(
OM

n [U ]oM
n −OD

n [U ]oD
n

)
/WD

n . (16b)

Mass balances equations for H+ can be obtained by
replacing U by H in (15)-(16).

5) State space representation: From (9), (15), and (16) ,
the process dynamical model can be represented as a system
of differential-algebraic equations as follow:

ẋ = fc(x,x
alg, u, q), (17a)

0 = g(x,xalg, u, q), (17b)

where

• x ∈ R128 is the vector of system states, i.e., uranium
and acid concentrations:

x1:16 = [[U ]aM
1 [U ]aM

2 . . . [U ]aM
16 ]

T ,
x17:32 = [[U ]oM

1 [U ]oM
2 . . . [U ]oM

16 ]
T ,

x33:48 = [[U ]aD
1 [U ]aD

2 . . . [U ]aD
16]

T ,
x49:64 = [[U ]oD

1 [U ]oD
2 . . . [U ]oD

16 ]
T ,

x65:80 = [[H]aM
1 [U ]aM

2 . . . [U ]aM
16 ]

T ,
x81:96 = [[H]oM

1 [U ]aM
2 . . . [U ]aM

16 ]
T ,

x97:112 = [[H]aD
1 [U ]aM

2 . . . [U ]aM
16 ]

T ,
x113:128 = [[H]oD

1 [U ]aM
2 . . . [U ]aM

16 ]
T ;

• xalg ∈ R32 is the vector of intermediate algebraic
variables, i.e., uranium and acid concentrations:

xalg
1:16 = [[U ]aM

∗,1 [U ]aM
∗,2 . . . [U ]aM

∗,16]
T ,

xalg
17:32 = [[H]aM

∗,1 [H]aM
∗,2 . . . [H]aM

∗,16]
T ;

• u = AF is the manipulated variable (the feed solution
flowrate);

• q = OE is the disturbance variable (the fresh solvent
flowrate);

• f ∈ R128 is the vector of mass balance equations;
• g ∈ R32 is the vector of algebraic equations;
• y := [U ]aD

9 = x41 is the controlled variable (the uranium
concentration at the outlet of the scrubbing stage);

• z := [U ]aD
1 = x33 is the constrained variable (the

uranium concentration in the fission products).

Several factors drive this choice of the controlled variable:
i) not all the system states can be measured online; ii)
these measurements usually have high cost; iii) this particular
variable’s value is compatible with our sensor’s measurement
range; and iv) analysis on the process dynamics show that
it is a good indicator for the solvent saturation level. For
convenience, we denote the discrete state space model as:

x(k + 1) = fd
(
x(k),xalg(k), u(k), q(k)

)
, (18a)

0 = g
(
x(k),xalg(k), u(k), q(k)

)
, (18b)

where x(k) := x(kT ), and T is the control sampling time
of the overall system.

B. Process Dynamics Analysis and Problem Statement

1) Solvent Saturation: An essential objective of the con-
trol system is to ensure that the system operates at a desired
solvent saturation, which can be indicated by the aqueous
uranium concentration at stage 9’s settler. In general, a higher
saturation level offers a higher decontamination towards fis-
sion products. However, there is a critical situation in which
the solvent saturation is at maximum, which is indicated as
As2

F in Fig. 4. As solvent saturation increases, the profile
aqueous uranium concentration in the settlers is shifted to
the left, as illustrated in Fig. 5.

The over-saturation situation is usually unwanted since
it risks losing uranium to fission products, which reduces
our extraction efficiency (since it is necessary to recover
as much uranium as possible). Therefore, in nominal opera-
tion conditions, keeping the system operating in the under-
saturated condition is preferable. This allows a safety margin
towards the over-saturated region. Note that operating under
saturation conditions can be profitable in some cases, as it
allows for the quick removal of other elements. Therefore,
the control system must also adapt to variations in the set
point and guarantee that not much uranium leaks into the
fission products.

As1
F As2

F

[U ]aD9,s1

[U ]aD9,s2

Solvent Saturation Condition

Under-saturation Over-saturation

Margin to saturation

AF

[U]

[U ]aD9
[U ]aD1

Fig. 4. Steady state relationship of feed solution flow rates and uranium
concentrations. Note that [U ]aD

9,s1 ≈ 37.5%[U ]aD
9,s2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

[U]
aD
9,s1

[U]
aD
9,s2

Stage (n)

[U]
aD
n

Nominal Condition Critical Condition

Fig. 5. Profiles of aqueous uranium concentration in nominal and critical
cases.
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2) Problem Statement: Considering the state space rep-
resentation (17), the goal is to design an optimal control
scheme that can regulate y = [U ]aD

9 to the desired set point
yset = [U ]aD

9,set while accounting for unknown disturbances.
Additionally, various constraints must be guaranteed during
operation, such as aqueous uranium concentration in the
extraction raffinates [U ]aD

1 (19a), overshoots (denoted by
OS) (19b), control input magnitudes AF (19c), and rates
of control inputs (19d). The bounding values Amin

F , Amax
F ,

and ∆max
AF

are defined based on the equipment limits, the
flow sheet. In addition, since the constraints (19a)-(19c) have
vital impacts on the overall control performance, we consider
them as hard constraints, and if necessary, we allow (19d)
to be relaxed to guarantee the others:

[U ]aD
1 ≤ [U ]aD

1,tol, (19a)

OS = y/yset − 1 ≤ OSmax, (19b)

Amin
F ≤ AF ≤ Amax

F , (19c)
|AF (k + 1)−AF (k)| ≤ ∆max

AF
. (19d)

Furthermore, we accept a steady state error of about 5% of
the set-point, i.e.,

e = |y − yset| ≤ 5%yset. (20)

III. ANN-BASED ADAPTIVE NMPC

This section presents the development of our proposed
ANN-based adaptive NMPC to stabilize the process output y
at a desired value yset. The overall control system architecture
is depicted in Fig. 6, where we first read measurements
from the process and estimate the disturbance variable q̂(k).
This action allows the controller to have the best updates
of the system parameters for further predictions. Within the
controller block, we first compute the desired control input
uset by solving the steady state condition:

0 = fc(x,x
alg, u, q̂), (21a)

0 = g(x,xalg, u, q̂), (21b)
y = x41 = yset. (21c)

The optimal control input is then computed by the NMPC,
which uses an ANN as the predictor. Note that if we keep
the control input as constant, i.e., u = uset, and the condition
(20) holds, we switch off the NMPC and apply directly uset to
the system. This strategy helps to reduce computation costs,
especially when we are near the steady state.

Set-point
Planner

ANN-based
NMPC or

Constant Controller

Real Plant

Virtual Plant

Parameter Estimator
(ANN-based MHE)

Controller

yset
uset

u = AF

ŷ = [U ]aD9

ym = [U ]aD9,m

q̂ = ÔE

yset

Fig. 6. Proposed neural network architecture.

A. ANN architecture

Regarding the control problem stated in Sec. II-B.2, to
implement the NMPC, two important outputs need to be
predicted: y := [U ]aD

9 and z := [U ]aD
1 , which are the aqueous

uranium concentrations in the settlers of stage 9 and 1,
respectively. In addition, since z is involved only in the
constraint (19a), it is not necessary to predict precisely the
value of z. Instead, we can use a binary variable z̄ ∈ {0, 1},
whose value is one if (19a) holds and is zero otherwise.
Furthermore, regarding the state space representation (17),
since y is the only online measurement that is available in
the system, we aim to predict y and z̄ based on the history
of y, u := AF , and p := OE :

y(k + 1) = fy (θ(k)) , (22a)
z̄(k + 1) = fz̄ (θ(k)) , (22b)

where the input vector θ(k) is defined as:

θ(k) :=

 {y(i)}ki=k−N

{u(i)}ki=k−N

{q(i)}ki=k−N

 . (22c)

The length of vector θ(k) is nθ = 3N . Recall that AF

and OE are the feed solution and fresh solvent flowrates,
respectively.

The ANN architecture is depicted in Fig. 7, in which fy
is a linear regression model cascaded with an LSTM, and fz̄
is a binary classification model:

fy (θ(k)) := Aθ(k) + fLSTM (θ(k)) , (23a)
fz̄ (θ(k)) := fLG (θ(k)) . (23b)

θ1

θ2

θNθ

...

Long
Short-Term
Memory
Network

Aθ

Logistic Regression
Network

fz̄(·)

Σ y

z̄

fy(·)

Fig. 7. Proposed neural network architecture.

The idea behind fy is to first predict y using a linear re-
gression model, and then compensate for the linear prediction
errors using the LSTM network. The training procedure for
fy is described as follows:
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1) Run multiple simulations with the virtual plant, collect
measurement histories, and construct the input-output
sets X , Y1:

X :=
{
θ(i)

}Nsam

i=0
, Y1 :=

{
y(i)

}Nsam

i=0
, (24)

where Nsam is the number of data samples, θ(i), y(i)

denote the ith input-output sample, respectively;
2) Train the linear regression model with X . In other

words, find A in (23a);
3) For each sample i, compute the linear regression error

e
(i)
1 and construct the linear regression error set E1:

e
(i)
1 := y(i) −Aθ(i), E1 :=

{
e
(i)
1

}Nsam

i=0
; (25)

4) Train the LSTM model with X and E1.
In addition, the logistic regression network fz̄ can be trained
using the input set X and the output set Y2:

Y2 :=
{
z̄(i)

}Nsam

i=0
. (26)

B. Adaptive NMPC design
To allow NMPC to have the ability to adapt to distur-

bances, which are unknown variations in the feed solution
flow rate (q = OE), we develop a Moving Horizon Estimator
to estimate this variable. This parameter estimator plays an
essential role in the control strategy, i.e., it always allows the
controller to be updated.

1) Parameter Estimator: At time step k, denote
q̂(j|k), ŷ(j|k) the estimated values of q and y at time
step j. Suppose that we want to estimate Ne latest values
of q, which are denoted by {q̂(i|k)}k−1

i=k−Ne
, and assume

that N +Ne latest measurements {ym(i)}ki=k−N−Ne+1 are
available. Then, the best estimates of {q̂(i|k)}k−1

i=k−Ne
can be

obtained by solving the optimization problem:

min
{q̂(j|k)}k−1

j=k−Ne

k∑
j=k−Ne+1

λk−j (ŷ(j|k)− ym(j))
2
, (27a)

such that ∀j ∈ Nk−Ne:k−1:

ŷ(j + 1|k) = fy

(
θ̂(j|k)

)
, (27b)

θ̂(j|k) :=

 {ŷ(i|k)}jj−N

{u(i)}jj−N

{q̂(i|k)}jj−N

 , (27c)

θ̂ (k −Ne|k) :=

 {ym(i)}k−Ne

k−Ne−N

{u(i)}k−Ne

k−Ne−N

{q̂(i)}k−Ne

k−Ne−N

 , (27d)

where λ ∈ (0, 1) is the forgetting factor.
Remarks: The ANN-based MHE formulation developed

above has Ne decision variable. If the MHE is formulated
based on the discrete mathematical model (18), the optimiza-
tion problem will be:

min
x̂(k−Ne), {q̂(j|k)}k−1

j=k−Ne

k∑
j=k−Ne+1

λk−j (ŷ(j|k)− ym(j))
2
.

(28)

subject to process dynamics (18). In other words, we will
have to estimate the initial condition x̂ (k −Ne), which
increases the number of decision variables by 128 ≫ Ne.
Therefore, the optimization problem (III-B.1) requires a
significant computation cost. An alternative approach was
proposed in [3] where we keep track of the error history
ŷ − ym to decide which should be the initial condition
x̂ (k −Ne) for (III-B.1). Therefore, the ANN allows us
to make predictions directly based on the measurements
and reduce the optimization problem’s complexity, hence
enabling practical implementation.

2) NMPC Design: At time step k, denote
{û(i|k)}k+Np−1

i=k the sequence of predicted control inputs
from time step k to k + Np − 1. Here, Np denotes the
prediction horizon length. In addition, assume that over the
prediction horizon, the disturbance variable q is constant,
and its value equals q̂(k−1) := q̂(k−1|k), computed by the
parameter estimator. Next, by denoting ŷ(j|k) the predicted
value of y at time step j, the optimal predicted control
inputs are obtained by solving the following optimization
problem:

min
{u(i|k)}k+Np−1

i=k

k+Np∑
j=k+1

wp [û(j|k)− yset]
2
+ wq ỹ

2 (Np|k)

+

k+Np−1∑
j=k

wr [û(j|k)− uset]
2

+

k+Np−1∑
j=k

ws [û(j|k)− û(j − 1|k)]2 (29a)

subject to process dynamics, i.e. ∀j ∈ Nk:k+Np−1:

ŷ(j + 1|k) = fy

(
θ̂(j|k)

)
, (29b)

z̄(j + 1|k) = fz̄

(
θ̂(j|k)

)
, (29c)

θ̂(j|k) :=

 {ŷ(i|k)}jk
{û(i)}jk

{q̂(i|k)}jk

 ; (29d)

constraints (19), i.e. ∀j ∈ Nk:k+Np−1:

z̄(j|k) = 1, (29e)
ŷ(j|k) ≤ yset (1 +OSmax) , (29f)

Amin
F ≤ û(j|k) ≤ Amax

F , (29g)
−∆max

AF
≤ û(j|k)− û(j − 1|k) ≤ ∆max

AF
; (29h)

and initial conditions:

û(k − 1|k) := u(k − 1), (29i)
ŷ(j|k) := ym(j) ∀j ∈ Nk−N :k−1, (29j)

q̂(i|k) := q̂(k − 1) ∀j ∈ Nk:k+Np−1. (29k)

Note that wp, wq , wr, ws are weighting parameters chosen
appropriately.

The optimization problems in MHE and NMPC can be
solved using the extended PSO algorithm method developed
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in [3]. The main extension lies in handling the constraints
(19). Briefly, whenever a candidate solution (a particle)
breaks the constraints, we re-initialize it until all constraints
are guaranteed.

IV. CASE STUDIES

This section presents studies of the ANN-based Adaptive
NMPC developed in Sec. III. The ANN was trained with
Google Colab Pro+ resources and simulations were done on
a laptop with Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
and 8GB RAM. For simulation of the real and virtual plant
(cf. Fig. 6), we use the CasADi toolbox [7] with IDAS from
SUNDIALS ([8], [9]) as the DAEs solver. In addition, the
ANNs are trained using scikit-learn ([10]) and Tensorflow
([11]). The NMPC and MHE weighting coefficients are
chosen heuristically. We will study 3 scenarios: i) the start-
up period, ii) the switching to the critical case, and iii) the
perturbed case. Simulation parameters are given in Tab. II.

TABLE II
SIMULATION PARAMETERS.

Parameter Value Parameter Value

T 0.5 hours Ne 3 steps
OSmax 20% λ 0.9
ε 5% Np 3 steps
Nsam 4E6 samples wp = wq 1/yset
Train-Validation-Test 98%-1%-1% wr = ws 1/uset

A. Data generation and ANN training

For the simulations in this paper, we use the mathematical
model developed in Sec. II-A to generate data and train the
ANN. Firstly, we made several transient simulations with
different values of u and q. Then, we round all floating values
to the six decimal places. For N = 2, the training data has
about four million records. Since the data set is big, we divide
the train, validation, and test sets with a ratio of 98%-1%-
1%. The LSTM and logistic regression networks parameters
and training results are given in Tab. III.

TABLE III
ANNS TRAINING INFORMATION.

LSTM Logistic Regession

Hidden layers 2 2
Units per layer 10 50
Learning rate 1E-03 1E-03
Batch size 1024 1024
Epochs 13 5
Final training loss 4.47E-4 (MAE) 0.21 (Cross Entropy)
Final validation metric 4.47E-4 (MAE) 0.9 (Accuracy)

B. Start up period

The system’s initial condition is described as follows: We
assume that uranium is only sent to the system since t =
0. In other words, before t = 0, only H and TBP are in
the process, with system parameters equal to their nominal

values. Furthermore, we assume that at t = 0, the system is
in a steady state (without uranium).

Simulation results of the start-up period are shown in
Fig. 8. It can be seen that the proposed control strategy
can effectively stabilize the system at the desired set point
while guaranteeing all the constraints (19). Compared to
the open loop controller, the controlled system significantly
improves the settling time, up to 5 times faster. Furthermore,
the switching condition (20) is active since t = 8.5h, which
allows to turn off NMPC for a lower computation cost.

0

[U]
aD
9,s1

ANN-based NMPC Open loop

10−32

[U]
aD
1,tol

ANN-based NMPC Open loop

0 5 10 15 20 25
AF,min

As1
F

AF,max

Time (h)

ANN-based NMPC Open loop

Fig. 8. Simulation results of the start up period.

C. Critical case
To study the ability of the proposed control strategy to

adapt to variations in the set point value, we continue the
simulation in Fig. 8 and assume that yset increases to the
critical value [U ]aD

9,s2 (cf. Fig. 4) at t = 25h and decrease
to its nominal value [U ]aD

9,s1 since t = 100h. The simulation
result of this case is depicted in Fig. 9. It can be seen that the
controlled system can rapidly track the set point values while
guaranteeing all the constraints. Furthermore, as expected,
the uranium edge is shifted to the left when the solvent
saturation increases, as depicted in Fig. 10.

0

[U]
aD
9,s1

[U]
aD
9,s2

ANN-based NMPC Open loop

10−32

[U]
aD
1,tol

ANN-based NMPC Open loop

0 25 50 75 100 125
AF,min

As1
F

AF,max

Time (h)

ANN-based NMPC Open loop

Fig. 9. Simulation results when set point varies, i.e. switching to critical
condition.

D. Perturbed case
To study the disturbance rejection ability of the proposed

control strategy, we analyze the case in which there are
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Fig. 10. Profile of aqueous uranium concentration in settlers at certain
time steps of the simulation in Fig. 9.

variations in the fresh solvent flow rate OE . The simulation
result for this case is shown in Fig. 11. It can be seen that
the developed ANN-based MHE is capable of estimating the
unknown disturbance, hence allowing the controller to be al-
ways updated with the process. Consequently, the controller
can effectively adapt to unknown disturbances.

Additionally, we notice that there is always a delay of
around 0.5h for the ANN-based MHE to make a successful
estimation. This phenomenon can be explained by the slow
dynamics of the process and the nature of our estimation
algorithm. Regarding the MHE formulation (27), the dis-
turbance variable q is estimated based on the output errors
between the actual plant and its digital twin ŷ−ym. However,
since the process dynamics are slow, it takes time for the
effects of the disturbance to be reflected in the output, i.e., the
error ŷ − ym becomes sufficiently large. As a consequence,
there are delays in parameter estimation. Furthermore, there
are mismatches between the NMPC prediction model and
the actual plant within these periods. Therefore, we noticed
some high overshoots at certain time steps: 20, 40, and 60h.
However, they are acceptable.

0

[U ]
aD
9,s1

Actual Estimated

0.9[U ]
aD
9,s1

[U ]
aD
9,s1

Actual Estimated

[U ]
aD
1,tol

Actual Estimated

AF,min

AF,max

Actual

0 10 20 30 40 50 60 70 80

0.8O0
E

O0
E

1.2O0
E

Time (h)

Actual (Unknown Disturbance) Estimated

Fig. 11. Simulation results of the perturbed case. Note that the first two
subplots both show the behavior of [U ]aD

9 over time, but at different scales
to give a better examination of this variable.

V. CONCLUSIONS

This paper presented a neural network-based adaptive con-
trol strategy for the uranium extraction-scrubbing operation
in the PUREX process. The artificial neural network (ANN),
which included the long-short term memory network, lin-
ear regression, and logistic regression networks, played an
essential role in the control strategy. Specifically, it was
the predictor in the Nonlinear Model Predictive Control
(NMPC) and the estimator in the Moving Horizon Estimation
(MHE). The MHE and NMPC optimization problems were
solved by an enhanced Particle Swarm Optimization (PSO)
algorithm, proposed in [3]. The ANN helped reduce the
complexity of the MHE optimization problem, thus allow-
ing online implementation ability. Multiple simulation case
studies showed that the developed control strategy was a
candidate solution for the control problem: it could stabilize
the system at a desired set-point while guaranteeing all the
constraints, even in critical conditions or under unknown
disturbances. Future developments included studies on other
uncertainties handling, online learning, stability, robustness,
and experimental implementation. Thorough comparisons
with and without ANN were to be carried out to assess the
benefits of introducing ANN.
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